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Abstract—To appreciate the effectiveness of lubrication approximation for the non-Newtonian fluid,
power law fluid flowing between nonparallel plates was investigated under condition with no inertia. First the
flow problem was successfully reduced to a single ordinary differential equation, and then the above govern-

ing equation was solved numerically. Effectiveness of lubrication approximation with various power law in-
dices below 1 and various diverged angles was investigated in terms of normalized flow velocity and ratio of
the approximate to exact flow rate. As the power law index decreases and diverged angle increases, the error
of lubrication approximation becomes increasingly larger. It was shown that the proper selection of the con-
stitutive law should be considered first to make the lubrication approximation work.

INTRODUCTION

The lubrication approximation has been an essen-
tial assumption in obtaining analytic solutions to the
converging or diverging problems in polymer process-
ings, particularly in both calendering and coating.
Since this problem was first solved for Newtonian
fluids long time ago, its effectiveness has been recon-
firmed through the works done by M.M. Denn and S.
Middleman(1,2). Excellence of the analyvtic solution
has never diminished notwithstanding the develop-
ment of various numerical methods with the advance
in digital computers, but also such solution for the sim-
plified system could be used as one of the means to
check the validity of the numerical solution for the
more complicated situation. Thus, the purpose of this
study is to evaluate the usefulness of the lubrication
approximation by examining closely its error for the
flow of non-Newtonian fluids in simple geometry. Spe-
cifically, for the pressure-driven flow of the power law
fluid through a two-dimensional duct with nonparallel
walls, effectiveness of the lubrication approximation
will be investigated with various power law indices
and various diverged angles. It is performed by com-
paring the exact numerical solution with the approxi-
mate solution obtained by using the lubrication ap-
proximation.

MATHEMATICAL DEVELOPMENT

Let us consider the problem of pressure-driven flow
through a two-dimensional duct with nonparallel

walls, as shown in Fig. 1. The total angle between the
plates is 2a, with the walls at = +a. We take the pres-
sure to be p= AP at r=r, p=0 at r=r,+L, and
k=(r,+ L)/r, It is well known that the converging
flow problem is exactly the same as the diverging case
if the inertia term is negligible. Here we restrict
ourselves to the diverging flow problem only. It is
assumed the flow is entirely radial, in that fluid par-
ticles move from the vertex along lines of constant 4,
so that v, = 0. The continuity equation in polar coor-

dinates is then
19 ¢v)=0 1)

That is, r V,=is independent of r, so equation (1)
integrates to

Fig. 1. A two-dimensional duct with nonparallel
walls in polar coordinates.
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V,= 16 (2)
r

Some restrictions on the function (@) are imposed
by boundary conditions. The velocity must vanish at
the side walls, § = za, because of the no-slip condi-
tion, so the function f{#) must vanish for #= za:
f(+a) = f(~a) = 0. The geometric symmetry makes f(9)
to be even, so the first derivative of f(#) becomes zero
at #= 0. Furthermore as shown later in equation (18),
it is convenient to specify f(§) at =0 instead of the
flow rate per unit width Q for the numerical calcula-
tions.

The r and ¢ compenents of the dynamic equation,
with steady, no inertia, and no gravity conditions,
become
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The details can be found in the book of F.C. Lu{3].

For the power law fluid, viscosity u is a function of
the second invariant Il of the appropriate velocity gra-
dient tensor.

p=K| 5 M0 8

where K is the consistency factor, n the power law in-
dex, and

L=t @iy (Lot 4 (L 2y,
= @ +£7) /1 9
Therefore,
u=Kg (8) /r*n" 10
where
g (8) = {4f*+£7) i)

Now, substituting equations (5) to (7) and (10) into
equations (3) and (4) yields the following relations of
functions f(4) and g(6).

rzn+1g$,:K n-1fg+f'g"+"g} (12

zn_a_E — i ’_ _ ’
Py K{2fg'-20-2)f"g} 13
It is easy to show that
% =C,+C, (8) 1" (19

where C, is constant independent of 8,r and C, is a

function of 4 only. From equations (12) and (13),
-C,=4n-1)fg+f’'g’ +f"g (15
Ci=2{g’'-2n-2)f'g 16)

Finally, the governing equation of function f(g) is
derived from above equations

(f’g)”"+4@Bn-n*){'g+4 2n-1)fg’=0 1n

for 0<<@<e. The boundary conditions are

f (0) =1, (18
/(8 =0 19
fla)=0 20

Equation {17) is a non-linear 3rd order ordinary differ-
ential equation, which can be normally solved by the
numerical means. Once f(6) is solved, f(#) and C(6)
give the exact flow rate and pressure difference per
unit width.

Qen=2 [‘1V.do=2["1 (91d0 21
APere 1, 1 .tan’q [@
SRty (NOLU R

On the other hand, the following lubrication approx-
imation can be obtained easily.

MPapy Qo 1|

K tane r2"

1,1 1t
k*'2n" 2n
The following equation is obtained from the condition
to have the same AP in equations (22) and (23).

9‘1_"" = (n)"" n (tanq)“‘i (./u‘ C.(edg)*™
Qe oo o™ [Ptipde
0

(29

1- " @3

Numerical strategy

It is not so difficult to solve numerically equation
(17). To solve this equation which is a non-linear 3rd
order ordinary differential equation, a combination of
non-linear shooting and 4th order Runge-Kutta algori-
thms was developed, and a half interval method
was applied to seek for the boundary conditon {"(0)
wanted in the shooting algorithm. 2nd order
Simpson'’s integration rule was also used in integration
of f(8) and C,(6).
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RESULTS AND DISCUSSION

The effectiveness of the lubrication approximation
on power law fluids flowing between nonparallel pla-
tes can be appreciated by observing the variation on
the power law index n and the diverged angle a. 1t is
useful for purposes of presentation to scale the depen-
dent and independent variables by equations (25) and
(26). A normalized angle ¢, and a normalized flow
velocity F are defined, as follows:

= 5
_of \
F= Q (26

Fig. 2 shows the normalized velocity profile F(¢)
for a appropriately selected a = 5° when the power law
indices are 1, 0.7 and 0.4 respectively. It is seen that
F(¢) becomes increasingly flatter as n decreases (This
tendency comes to be clear from surplus numerical re-
sults.). Variation withthe diverged« is shown in Fig. 3,
where F(¢) becomes increasingly sharper as a in-
creases. Though Fig. 3 is the result in case of n = 0.7,
analogous results were also obtained under other n be-

0.8 T T

Fl¢)

1 1 1 L

] 0.2 0.4 0.6 08 1
¢

Fig. 2. Normalized flow velocity functions F(¢) for

a=5°.
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low 1. The limiting value lim F(8) = %(l-eﬁz) for Newto-
nian flow shows exactly the same results obtained by
the numerical calculations. The curves in Figs. 2 and 3
suggest that the diverged angle acting as the geometri-
cal factor is relatively less sensitive than the power law
index as the constitutive law.

Effectiveness of the lubrication approximation with
n and « can be investigated by comparing flow rate
Qgpp Obtained by the approximation with the exact
flow rate Q,,, to give the same pressure difference. Fig.
4 shows plain variations of ratio Q,,,/Q.,, with n and
a. It is seen in Fig. 4 that Q,,, deviates increasingly
faster as n decreases and a increases, and furthermore
the lubrication approximation for the fluid with small
n would make a serious error even for the geometry
with small angle a.

The severe error in lubrication approximation for
small n despite of the moderate and gradual variation
of F(¢) is due to the inverse exponent of n in equation
{24). It thus appears that application of the lubrication
approximation for small n rises to serious errors.

On the other hand, to see the geometric effect in
lubrication approximation, the ratio Qg,,/Q,,, in the
case of the expanding tube for Newtonian fluids was
plotted with dotted line in Fig. 4. This happens to near-
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Fig. 3. Normalized flow velocity functions F(g) for
the fluid with n = 0.7.
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Fig. 4. Ratio of approximate to exact flow rate, Q__/
Q.xr against o.

The solid curves are for the power law fluids (from
the bottom, n =1, 0.8, 0.6, 0.4, and 0.2) flowing be-
tween nonparallel walls. The dotted curve is for the

Newtonian fluid flowing through a expanding tube.
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Fig. 5. The angle ato give the allowable % error in
the lubrication approximation against the
power law fluid index n (From the top, the
allowable % error are 30%, 20%, 10%, 5%,

and 1% respectively).

ly coincide with the curves of power law flow for
n = 0.8 in plain geometry. The diverged angle to give
% error in the lubrication approximation is shown in
Fig. 5. which was reconstructed from the raw data
shown in Fig. 4 using 4-node Lagrangian interpolation.
Fig. 5 gives a clear-cut criterion on the lubrication
approximation to be applied within an permissible er-
ror.

CONCLUSION

The lubricated flow problem for the power law
fluid, so difficult to obtain the exact analytic solution,
was successfully reduced to a single ordinary differ-
ential equation. This means that the solution can be
obtained with little further effort. Though this study is

restricted on the flow with no inertia in plain
geometry, it is sufficient to investigate the virtue of
lubrication approximation itself. As the power law in-
dex decreases and the diverged angle increases, their
non-linearly combined effects on the lubrication ap-
proximation act increasingly. It was shown that the
proper selection of the constitutive law should be con-
sidered first to make the lubrication approximation
work.

NOMENCLATURE

Co . a constant defined in equation (14)
c(8) : afunction defined in equation (14)
F(¢) : a normalized flow velocity defined by equa-

tion (26)
f(#) : afunction defined by equation (2)
£, :fatg =0
g(#) : afunction defined by equation (11)
K : the consistency factor defined in equation (7)
k : ratio of inlet to outlet section of plates
L . length of plates
n : the power law index defined in equation (7)
p : pressure of fluid
P : pressure at inlet section of plates
AP : pressure difference from inlet to outlet sec-
tion of plates
Q . flow rate per unit width
r . aradial position in polar coordinate system
I, r at inlet section of plates as shown in Fig. 1
V,V, : the velocity components of r and ¢
T T, Te : the elements of stress tensor in the polar
coordinate system defined by equations
(5)to (7
,” . denote lst and 2nd derivatives respectively
Greek Letters
a : the diverged angle of nonparallel plates
¢ : a normalized angle by defined equation (25)
8 . an angle in polar coordinate system
K 1 viscosity
1l . asecond invariant defined by equation (9)
Subscripts
ext : refers to the exact numerical solution
app : refers to the lubrication approximation
REFERENCES

1. Denn, M.M.: “Process Fluid Mechanics”, Ch.10,
Prentice-Hall, Inc. (1980).

2. Middleman, S.: “Fundamental of Polymer Process-
ing”, Ch.8, MacGraw Hill, Inc. (1977).

3. Lu, P.C.: “Introduction to the Mechanics of Viscous
Fluid”, Ch.8, Hemisphere Pub. Corp. {1977).

Korean J. Ch. E. (Vol. 6, No. 2)



