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Abstract--To appreciate the effectiveness of lubrication approximation for the non-Newtonian fluid, 
power law fluid flowing between nonparallel plates was investigated under condition with no inertia. First the 
flow problem was successfully reduccr to a single ordinary differential equation, and then the above govern- 
ing equation was solved numerically. Effectiveness of lubrication approximation with various power law in- 
dices below 1 and various diverged angles was investigated in terms of normalized flow velocity and ratio of 
the approximate to exact flow rate. As the power law index decreases and diverged angle increases, the error 
of lubrication approximation becomes increasingly larger. It was shown that the proper selection of the con- 
stitutive law should be considered first to make the lubrication approximation work. 

INTRODUCTION 

The lubrication approximation has been an essen- 
tial assumption in obtaining analytic solutions to the 
converging or diverging problems in polymer process- 
ings, particularly in both calendering and coating. 
Since this problem was first solved for Newtonian 
fluids long time ago, its effectiveness has been recon- 
firmed through the works done by M.M. Denn and S. 
Mkldleman[1,2]. Excellence of the analytic solution 
has never diminished notwithstanding the develop- 
ment of various numerical methods with the advance 
in digital computers, but also such solution for the sim- 
plified system could be used as one of the means to 
check the validity of the numerical solution for the 
more complicated situation. Thus, the purpose of this 
study is to evaluate the usefulness of the lubrication 
approximation by examining closely its error for the 
flow of non-Newton[an fluids in simple geometry. Spe- 
cifically, for the pressure-driven flow of the power law 
fluid through a two-dimensional duct with nonparallel 
walls, effectiveness of the lubrication approximation 
will[ be investigated with various power law indices 
and various diverged angles. It is performed by com- 
paring the exact numerical solution with the approxi- 
mate solution obtained by using the lubrication ap- 
proximation. 

M A T H E M A T I C A L  D E V E L O P M E N T  

Let us consider the problem of pressur~driven flow 
through a two-dimensional duct with nonparallel 

walls, as shown in Fig. 1. The total angle between the 
plates is 2a, with the walls at 0 = • a. We take the pres- 
sure to be p =  AP at r=ro, p = 0  at r = r  o+L,  and 
k = ( r o +  L)/ro. It is well known that the converging 
flow problem is exactly the same as the diverging case 
if the inertia term is negligible. Here we restrict 
ourselves to the diverging flow problem only. It is 
assumed the flow is entirely radial, in that fluid par- 
ticles move from the vertex along lines of constant 0, 
so that ve = 0. The continuity equation in polar coor- 
dinates is then 

(r V.):=0 (1) 

That is, r V r :  is independent of r, so equation (1) 
integrates to 

" ~ "  - .  r o r o + L 

Fig. I. A two-dimensional duct with nonparallel 
walls in polar coordinates. 
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V,= f (0) (Z) 
r 

Some restrictions on the function frO) are imposed 
by boundary conditions. The velocity must vanish at 
the side walls, 0 = • because of the n,>slip condi- 
tion, so the function f(0) must vanish for 0= • 
f(+a) = f(-a) = 0. The geometric symmetry makes f(0) 
to be even, so the first derivative of f(0) becomes zero 
at 0= 0. Furthermore as shown later in equation (18), 
it is convenient to specify f(0) at 0= 0 ir~stead of the 
flow rate per unit width Q for the numerical calcula- 
tions. 

The r and 0 components of the dynamic equation, 
with steady, no inertia, and no gravity conditions, 
become 

aT,-,- 1 0%'o [_ 1 
Or § r O0 T i f , - , - -Too)=0  113) 

~ +  O (4) ~ r T , = 0  
1 OToo 
r O0 

and 

OV,- 
T ~ = - p + 2 ~  Or (5) 

Too= - p+2 ,u  r V--~ (6) 

1 OV,- 
T'~ a--~ (7) 

The details can be found in the book of P.C. Lu[3]. 
For the power law fluid, viscosity,u is a function of 

the second invariant II of the appropriate velocity gra- 
dient tensor. 

1 iii <n_,l/, ,u= K I~- I8) 

where K is the consistency factor, n the power law in- 
dex, and 

12 l I = 2 t ( ~ r ~ ) ' + ( ~ r ) ' t + ( r  - 

= ( 4 f ' + f " ) / r '  (9) 

Therefore, 

p = K g  (0)/r 2~'-'~ (10) 

where 

g (O)= (4 f '+ f  "~) . . . . .  / '  {11) 

Now, substituting equations (5) to (7) and (10) into 
equations (3) and (4) yields the following relations of 
functions f(0) and g(0). 

r '"+' ~ = K / 2  (n - 1 ) f g + f ' g ' + f " g }  (12) 
dr 

2, ap - K  r ~-~-- f 2 f g ' - 2 ( n - 2 ) f ' g }  (13) 

It is easy to show that 

IL = C o + C ,  (0)/r 2" (14) K 

where C o is constant independent of 0,r and C~ is a 
function of 0 only. From equations (12) and (13), 

- 2 n C , = 4  (n .  - -  1 ) f g + f ' g ' + f " g  (15) 

C ; = 2 f g ' -  2 ( n -  2) f ' g  (16) 

Finally, the governing equation of function f(0) is 
derived from above equations 

( f ' g ) " + 4  ( 3 n - n ' ) f ' g + 4  (2n-  1 ) f g ' = 0  (17) 

for 0 ~ 0~:a. The boundary conditions are 

f (0)=fo (18) 

f '  (0)=0 (19) 

f (a) =0  (20) 

Equation (17) is a non4inear 3rd order ordinary differ- 
ential equation, which can be normally solved by the 
numerical means. Once f(0) is solved, f(0) and C1(0 ) 
give the exact flow rate and pressure difference per 
unit width. 

Q e , ,=  2 fo ~ V,.d 0 :  2fo ~'f (0)d0 (21) 

1 ) t a n 2 % f ~  o (Z~) AP . . . .  1 : I - - -  
K r=o" \ k l ~ l l  f f  J o  

On the other hand, the following lubrication approx- 
imation can be obtained easily. 

AP . . . .  Q,~p~ 1_(1 - 1 ) 1 ( l + 2 n . , ,  
K tan~ ro=" '" ~ r  2n ~ - )  (23) 

The following equation is obtained from the condition 
to have the same A P in equations (22) and (2:3). 

Q . . . .  (2n)l/n n (tan a) =+~ (Jr C'(e)d~ 
Qe., t •  a '/'~ f0~'f (O)d8 

(24) 

N u m e r i c a l  s t ra tegy  
It is not so difficult to solve numerically equation 

(17). To solve this equation which is a non-linear 3rd 
order ordinary differential equation, a combination of 
non-linear shooting and 4th order Runge-Kutta algori- 
thms was developed, and a half interval method 
was applied to seek for the boundary conditon f"(0) 
wanted in the shooting algorithm. 2nd order 
Simpson's integration rule was also used in integration 
of f(0) and Cl(0). 
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RESULTS AND DISCUSSION 

The effectiveness of the lubrication approximation 
on power la,v fluids flowing between nonparallel pla- 
tes can be appreciated by observing the variation on 
the power law index n and the diverged angle a. It is 
useful for purposes of presentation to scale the depen- 
dent and independent variables by equations (25) and 
(26). A normalized angle r and a normalized' flow 
velocity F are defined, as follows: 

@= ~- (25) 

af (26) F = Q -  

Fig. 2 shows the normalized velocity profile F(,~) 
for a appropriately selected e = 5 ~ when the power law 
indices are 1, 0.7 and 0.4 respectively. It is seen that 
F(r becomes increasingly flatter as n decreases (This 
tendency comes to be clear from surplus numerical re- 
sults.). Variation with the divergeda is shown in Fig. 3, 
where F(~) becomes increasingly sharper as a in- 
creases. Though Fig. 3 is the result in case of n = 0.7, 
analogous results were also obtained under other n be- 

low 1. The limiting value l~m F(r = 3(1-r for Newto- 
nian flow shows exactly the same results obtain(_~ by 
the numerical calculations. The curves in Figs. 2 apd 3 
suggest that the diverged angle acting as the geometri- 
cal factor is relatively less sensitive than the power law 
index as the constitutive law. 

Effectiveness of the lubrication approximation with 
n and a can be investigated by comparing flow rate 
Qopp obtained by the approximation with the exact 
flow rate Q~t to give the same pressure difference. Fig. 
4 shows plain variations of ratio Qapp/Qexl with n and 
u. It is seen in Fig. 4 that Qapp deviates increasiingly 
faster as n decreases and a increases, and furthermore 
the lubrication approximation for the fluid with small 
n would make a serious error even for the geometry 
with small angle a. 

The severe error in lubrication approximation for 
small n despite of the moderate and gradual variation 
of F(r is due to the inverse exponent of n in equation 
(24). It thus appears that application of the lubrication 
approximation for small n rises to serious errors. 

On the other hand, to see the geometric effect in 
lubrication approximation, the ratio Qapp/Q~t in the 
case of the expanding tube for Newtonian fluids was 
plotted with dotted line in Fig. 4. This happens to near- 

FI= 

08[ 
I 

0,8] 

a = 30 ~ 

0.6 

r~ 

0.4 

0.2 

n=0.4 

g 

0 0.2 0.4 0.6 0.8 l 

Fig. 2. Normalized flow velocity functions F(~b) for 
0'----5 ~  

0.6 

0.4 
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0 0.2 0.4 0.6 0.8 1 
r 

Fig. 3. Normalized flow velocity functions F(~b) for 
the fluid with n = 0.7. 
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t .5 

I A  

C:" 

1.2 C',' 

Fig. 4. 

0 o 5 ~ 10 o 15 ~ 20 o 25 ~ 30 ~ 

Ratio of a p p r o x i m a t e  to exact flow rote,  Q~,~] 
Q~r aga ins t  a.  
The solid curves are for the power law fluids (from 

the bottom, n = I, 0.8, 0.6, 0.4, and 0.2) flowing be-. 
tween nonparallel walls. The dotted curve is for the 
Newtonian fluid flowing through a expanding 'albe, 

2t) c 

10 c 

0 o 
0.8 0.6 0.4 0.2 

n 

Fig. 5. The a n g l e  a to g ive  the a l l o w a b l e  % e r r o r  In 
the  lubricat ion approx imat ion  aga ins t  the  
p o w e r  law fluid index  n (From the  top, the  
a l l owab l e  % e r r o r  are  30%, 20%, I0%, 5%, 

and 1% respect ive ly ) .  

ly coincide with the curves of power law flow for 
n = 0.8 in plain geometry. The diverged angle to give 
% error in the lubrication approximation is shown in 
Fig. 5. which was reconstructed from the raw data 
shown in Fig. 4 using 4-node Lagrangian interpolation. 
Fig. 5 gives a clear-cut criterion on the lubrication 
approximation to be applied within an permissible er- 
ror. 

CONCLUSION 

The lubricated flow problem for the power law 
fluid, so difficult to obtain the exact analytic solution, 
was successfully reduced to a single ordinary differ- 
ential equation. This means that the solution can be 
obtained with little further effort. Though this study is 

restricted on the flow with no inertia in plain 
geometry, it is sufficient to investigate the virtue of 
lubrication approximation itself. As the power law in- 
dex decreases and the diverged angle increases, their 
non-linearly combined effects on the lubrication ap- 
proximation act increasingly. It was shown that the 
proper selection of the constitutive law should be con- 
sidered first to make the lubrication approxinlation 
work. 

NOMENCLATURE 

C O : 

g(8) : 

F(@) : 

f (e )  : 

fo 
g(e) : 

K : 
k 
L : 
n : 
p : 

P : 
A p  : 

Q : 

r : 

r o 
V,,V~ : 

a constant defined in equation (14) 
a function defined in equation (14) 
a normalized flow velocity defined by equa- 

tion (26) 
a function defined by equation (2) 
f a t 0  = 0  

a function defined by equation (11) 
the consistency factor defined in equation (7) 
ratio of inlet to outlet section of plates 
length of plates 
the power law index defined in equation (7) 
pressure of fluid 
pressure at inlet section of plates 
pressure difference from inlet to outlet sec- 
tion of plates 
flow rate per unit width 
a radial position in polar coordinate system 
r at inlet section of plates as shown in Fig. 1 
the velocity components  of r and 8 

T~,Tre,Tee : the elements of stress tensor in the polar 
coordinate system defined by equations 
(5) to (7) 

'," : denote Ist and 2nd derivatives respectively 

G r e e k  L e t t e r s  

a : the diverged angle of nonparallel plates 
@ : a normalized angle by defined equation (25) 
0 : an angle in polar coordinate system 

: viscosity 
II : a second invariant defined by equation (9) 

S u b s c r i p t s  
ext : refers to the exact numerical solution 
app : refers to the lubrication approximation 
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